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Unsteady, viscous, circular flow 
Part 2. The cylinder of finite radius 

By MERWIN SIBULKIN 
Convair Scientific Research Laboratory, San Diego 

(Received 27 February 1961, and in revised form 7 August 1961) 

The problem considered is that of the two-dimensional motion of the fluid in a 
cylinder of finite radius after the outer portion of the fluid is given an initial 
uniform velocity. The primary purpose of the investigation is the study of the 
changes in the energy distribution in the fluid as the initial motion decays. The 
appropriate flow equations are developed and then approximated by finite- 
difference equations. Numerical solutions of these equations are presented, and 
the energy-transfer processes are discussed in some detail. During the early 
stages of the flow, it is found that the spatial distribution of energy depends 
strongly on the Prandtl number. During the later stages, however, there is a 
net outward flow of energy for the case of a liquid and a net inward flow for a gas. 

1. Introduction 
In  the present paper, the investigation of unsteady, viscous flow begun in the 

paper of Sibulkin (196lb), which will be referred to hereafter as Part 1, is con- 
tinued. In  Part 1, results were obtained for an unbounded fluid; in Part 3, the 
problem of a fluid bounded by a stationary circular cylinder of infinite length 
and finite radius is considered. The fluid is initially put into two-dimensional, 
circular motion about the axis of the cylinder, and the subsequent decay of this 
motion is studied. It is assumed that the cylinder wall is insulated, and our 
interest will be focused upon the transfer of energy between fluid elements, 
due to viscous work and heat conduction. The results obtained in this paper 
will be applied in a later paper to an investigation of the Ranque-Hilsch vortex 
tube. 

The analysis builds upon results obtained in Part 1, and is again limited to 
flows for which the Mach number is everywhere much less than one. Although it 
was possible to find solutions in closed form for the case of an unbounded fluid, 
it has not been possible to do so for the bounded fluid (as might be expected from 
the similar situation in heat conduction problems; see, for example, Chaps. X and 
XIV of Carslaw & Jaeger 1959). While the solution of the momentum equation 
in the form of an infinite series is straightforward, the solution of the energy 
equation is not. Consequently, the governing equations are converted to finite- 
difference form and integrated directly. Numerical results for some typical cases 
are presented and discussed for both liquids and gases. It is hoped that this 
discussion gives some insight into the mechanism of energy t.ransfer in rotating 
fluids. 
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2. Fundamental equations and boundary conditions 
In  this paper we shall consider two idealized fluids: (i) the perfect gas having 

the equation of state p = p 9 T  and constant values of specific heat cp and c,, 
and (ii) the perject liquid having the equation of state p = const. and a single, 
constant specific heat c. Herea.fter, when the terms gas or liquid are used, they 
will be understood to refer to the perfect fluids defined .above. 

When the Mach number satisfies the condition M < 1 everywhere in the flow 
field and there is no heat conduction across the boundaries of the fluid, the 
momentum and energy equations for two-dimensional, axisymmetric flow can 
be reduced to the form of equations (3.10) and (3.11) in Part 1: 

where the momentum equations have been written in terms of the angular 
velocity w, and where we have used a general purpose total energy (or enthalpy) 
variable E and a ‘Kronecker 6’ defined such that 

E = H -h,, a,, = 1 (for a gas); a = E-e,, S,, = 0 (for a liquid). ( Id )  

In  (1 a)  through ( 1  d ) ,  e and h are the internal energy and enthalpy while E and 
H are the total energy and total enthalpy; p ,  p, v, and CT are the fluid pressure, 
density, kinematic viscosity, and Prandtl number ; r and t are the radial and 
temporal co-ordinates; the subscript c refers to  the initial value in the core of 
the fluid, i.e. the value at  r = 0, t = 0. 

For a liquid, changes in pressure do not affect the energy field. For a gas, the 
increase in enthalpy due to compression of a fluid element can be determined 
from the radial momentum equation; the result, again for M < 1 (cf. Part 1, 

- 

equation (3.9)), is 

The last term in (2) depends only upon the velocity distribution which is deter- 
mined by the solution of ( I b )  alone; the second term is physically determined 
by the requirement of conservation of mass 

d(mass) 
~ = 2nlOR$rdr = 0, 

at (3) 

where R is the cylinder radius, and by the equation of state in the differentiated 
form, 

where T is the temperature and 22 is the gas constant. Combination of (2), (3) 
and (4) gives 



150 Merwin Sibulkin 

where y is the ratio of specific heats. We define 
A 8 ao2 

s = r/R, T = (u/R2)t, 0 = ( R / V ) w ,  E = (2 /V2)E ,  f = lo (a7)s'da', (6) 

where V is a characteristic velocity, and substitute (6), (5), and (Id) into ( l c )  
and (1 b )  to give 

(7) 

+-- 
Solving (8) for aE/& yields 

h 

as 
a(o2) 1 ( 9 b )  

where g ( s , ~ )  E (a -1 ) sS- - - -2s2D2  +2fafQ, 

k(T) = lo1 [ ( y-  y)  1 s2 a7 a(o2) + 2f] dsa. 

The momentum and energy equations will be used in the forms given in (7) 
and (9). The corresponding boundary conditions are 

where the conditions at s = 0 follow from the symmetry of the flow field, and the 
condition on &/as at s = 1 follows from the assumption of zero heat transfer 
across the boundary of the fluid. 

For a liquid, the solution of (7), (9) and (10) gives the angular velocity field 0 
and the total-energy field e = (E-ec)/4V2; the circumferential velocity and 
internal energy fields are then found from 

3 = v/V = st) and e  ̂ = (e-ec)/$V2 = ,@-82. (11) 

8 = f i / y + [ ( y - l ) / y ] P  and A = &-02, (12) 

For a gas, the solution gives (3 and the total enthalpy fi = ( H  - hc)/QVz; the total 
energy and static enthalpy are given by 

while w and e are again given by (1 1). 

3. The density and pressure fields 
For a liquid, the density is constant and the pressure is given by integrating 

( l a )  to p - p ,  = p d r ' d r ' .  lor  
We define 

j3 (P-P,)/$/I, V2,  p^ (P-P~)/A/I,; .A? = V2/2h, = &(y- 1)2M2. (13) 
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The gas law p = [ y / (y -  l)] ( p / h )  can then be written, subject to our limitation 
to M g 1, in the non-dimensional form 

B = [ 7 / ( 7 4 ) 1 @ - h .  (14) 

Since 8 is given in (12), only @ remains to be determined. 
The pressure distribution for a gas, as noted in $ 2  during the derivation of 

ap/at, depends upon the radial momentum equation, the equation of state, and 
the conservation of mass. Integrating (1 a)  and dehing  

gives 

We combine (14) and (15b) with the conservation of mass requirement to give 

f J 7 )  E n / ' p d s 2  0 = 7r~'{[y/(y-l)][@(O,~)+F(8,~)]-~(s,~)}ds~ 0 = const. 

(16) 

By evaluating fp at 0 and r, equation (16) may be solved for $(O, 7); substitution 
of this result into (15b) gives the solution for the gas-flow pressure field as 

In  (16) we have defined an integral f,, which embodies the conservation of 
mass requirement and is thus invariant with time. Similarly, conservation of 
energy can be expressed in terms of the integrals 

I,(.> 3 7r j: ( p ~  -pcec) ds2 &peec = const.? I (18) 

(19) and f&) = 7r jO18dS' .  

Since it was shown in equation (7.5) of Part I that f z v ,  fE, and f,, are linearly 
related, it follows that f, must also be invariant with time. These integrals have 
proved useful in checking the numerical solutions discussed in 0 5.3. 

4. A m t e  difference approximation to the equations 
The fundamental equations for the decay of an unsteady, viscous, circular 

flow in a cylinder of finite radius have been given as the pair of linear partial 
differential equations (7) and (9). The momentum equation (7) is a homogeneous 
equation which is independent of the energy equation (9). Its solution for an 

t This constant value of f~ is simpler than the corresponding result given in (7.9) of 
Part 1 because the finite cylinder considered here is a closed thermodynamic system whereas 
the infinite fluid in Part 1 waa an open thermodynamic system. 
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arbitrary initial condition, in terms of an infinite series, is straightforward and 
will be shown in $5.2. The energy equation, however, is an inhomogeneous 
equation coupled to the momentum equation; consequently, its inhomogeneous 
part will involve the infinite-series solution for 9. Even if an analytic solution 
of the energy equation was obtainable, after much effort, in terms of a doubly 
infinite series, it  is doubtful if such a result would provide much insight into the 
general behaviour of the system. Thus it appeared preferable to attack the 
fundamental equations directly by means of a finite-difference approximation 
which would be suitable for machine computation. 

The approximation chosen was an explicit difference scheme employing a 
forward time-difference and central space-differences. The details of the finite- 
difference analysis are not considered of sufficient interest for presentation here, 
but are available in Sibulkin ( 1 9 6 1 ~ ) .  That report includes a discussion of the 
criteria which must be satisfied to obtain stable solutions of the difference 
equations, and presents a technique for circumventing an instability in the 
numerical solutions at the axis of the cylinder which was found to be associated 
with the singular character of (7) and (9) at s = 0. 

5. Solutions for a particular flow problem 
The fundamental equations and boundary conditions governing circular 

flows in a stationary cylinder have been given in $ 2. In  $8 5.2 and 5.3, solutions 
of these equations will be presented for the particular set of initial conditions 
described in the next section. 

5.1. Initial coditions 

The problem which will be solved is that of a circular cylinder of fluid which is 
initially divided into a quiescent core and an annulus in uniform circular motion, 
that is 

v(s,O) = 0 for 0 < s < a, v(s,O) = V for a < s < 1. (20a)  

For s > a, (20a) makes C(s,O) = l/s. The initial energy distribution chosen to 
illustrate the energy transfer processes is 

&(s, 0) = e,, (20b)  

which, by conservation of energy (cf. $2), can be shown to make 8 ( s ,  co) = e,, 
for both liquids and gases. For a liquid, (2Ob) gives E(s, 0) = 0 for all s; for a gas, 
using (12), E(s, 0) = - (7- 1) for s > a. 

h 

A 

5.2. Series solution for the velocity field 

The general solution of the momentum equation (7) for an arbitrary initial 
velocity distribution is (McLeod 1922) 

00 

3(s,7) = I: 2exp ( -h%7)Jl(&s) [.J,(Ai)]-2 s2~(s ,0 )J l (h i s )ds ,  (21) 
i=l 
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where the hi are the zeros of the Bessel function J1. (The derivation of (21) is 
discussed in Part I ,  $4.1.)  Integration of (21) by parts for the initial condition 
(30a) gives 

m 

8(s, T ;  a )  = 2 2 exp ( - h:7) J,(h,s) [J0(hi)]-2 
i= l  

x [ (a/hi)  ~O(hia) -~o(hi)/hi + ( 1 / ~ , ) ” ~ ~ ~ ( h j s ) d ( h ~ S ) ]  3 ( 2 2 )  

where 

(1943). A comparison of (22) and a finite-difference solution is given later. 

Jo(t) dt  has been tabulated for x = 0 (0.01) 10 by Lowan & Abramowitz 
!OX 

5.3. Finite-diflerence solutions and discussion of energy-transfer processes 

The finite-difference equations obtained from (7), (9), and (10) together with the 
initial conditions of $5.2 were programmed for machine computation. A pre- 
liminary survey showed that the value of the parameter a did not change the 
qualitative character of the results, and the solutions presented in this paper 
are all for a = 0.6. 
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FIGURE 1. Spatial distributions of angular velocity k = ( R / V )  w and 
circumferential velocity v̂  v/V at successive times 7 ( v / R ~ )  t. 

The angular velocity and circumferential velocity distributions are shown in 
figure 1. Although the vorticity at  the axis of the cylinder is initially zero, it  
later reaches and remains a maximum there. The early velocity profiles have an 
inflexion point which is a characteristic of the initial velocity condition (and 
which will be of interest in the application to the vortex tube). The finite-differ- 
ence results agree, as they should, with the series solution (22). 

In  figure 2,  typical internal-energy, pressure, and density distributions are 
shown for a gas having y = 1.4 and r = 2. (The e profiles, it is clear, are also 
the static temperature profiles.) For a liquid, the initial distributions of 4 and $3 
would be the same; the subsequent 9 profiles would have the same shape as 
those in figure 2 b, but with @ ( O ,  7 )  = 0. 
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For the purpose of discussing the energy transfer processes, it may be useful 
to write the energy equation (1 c )  in the form 

(i) (ii) (iii) 

8 8 8 

(4 ( b )  (4 
FIUURE 2. Typical internal energy d 3 (e-e,)/+Va, pressure$ 

number cr = 3. 

( p - p , ) / ~ p , V a ,  and density 
z (p - p c ) / d p o  distributions for a gas having a ratio of specific heate y = 1.4 andaPrandt1 

where the terms on the right-hand side of the equation represent: (i) the increase 
in enthalpy due to compression of a fluid element, (ii) the viscous work on an 
element, and (iii) the net heat conduction into an element. While (i) and (iii) 
affect only the temperature of a fluid element, the viscous work (ii) affects both 
its temperature and velocity. This may best be seen by splitting the viscous 
work term into (cf. Part 1, equation (4.11)) 

which, by the momentum equation (1 b) ,  shows that 

w = a(+pv2)/at + fD, (24 b )  

where 0 is the dissipation function. 
In  our insulated wall problem, the viscous work acts as a forcing function 

which alters the initially constant total-energy distribution, while the heat 
conduction acts as a smoothing function which eventually returns the fluid to a 
constant-energy condition. With this thought in mind, figure 3 shows the cumu- 
lative effect of viscosity and compression on the energy distribution in the 
absence of heat conduction. For both liquid and gas, the energy of the outermost 
layer of fluid is increased a t  the expense of the initial kinetic energy of the 
remaining fluid in the annulus s > a. Viscosity also increases the energy of the 
fluid just in the interior of s = a, by first accelerating this initially quiescent 
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fluid and then dissipating this acquired kinetic energy into heat. In  addition, 
for a gas, the energy of the fluid interior to s M 0.8 is increased by compression 
(cf. figure 2 b )  while the energy of the fluid exterior to 8 M 0.8 is decreased by 
expansion. Finally, since w(s, co) = 0 and the energy-transfer processes are 
continuous across s = a, it  can be shown that fi(a+, co) -fi(a-, co) = 1 which 
is equal to the initid discontinuity in kinetic energy at 8 = a. 

- lQL 
c I I I I I I I I I 1 
0 02 04 d6 08 I!O 0 0.2 04 0:6 08 1.0 

8 8 

(a )  Liquid ( b )  Gas, y = 1.4 

FIGURE 3. Distribution of tOtRl energy I?? z (E--eO)/&Va resulting from the 
action of viscosity and compression in the absence of heat conduction. 

In  figure 4, a set of energy distributions at three values of Prandtl number 
for both a liquid and a gas are presented. The distributions for gases with y 
equal to 1.0 and 1-67 did not differ qualitatively from those presented for 
y = 1.4. Since the total energy content of the fluid is invariant with time (cf. tj 2), 
f , ( ~ )  = f,(O) = 0 for all the profiles and J??(s,co) = &(s, 0) = 0 since w(s, co) = 0 
and T(s,co) = const. The effects of varying the Prandtl number, u = y/(k/c,) ,  
can be followed more clearly for the liquid. For u = $, viscosity predominates 
at early values of 7 and the profiles resemble those for u = co (figure 3a). For 
CT = 2, thermal conductivity predominates at early values of 7,  and the energy 
profile (especially for 7 = 0.0075) reflects the heat conduction into the initial 
static temperature depression a t  s > a (cf. figure 2a). This heat-conduction effect 
is sufficiently strong, for u = 8, to give a slightly negative value of J?? a t  = 1, 
which is reminiscent of the decrease in total temperature at the surface of a 
plate (recovery factor less than one) which occurs with fluids having similar 
values of Prandtl number. At later times, however, the liquid energyprofiles 
for all three Prandtl numbers are similar; the energy increases monotonically 
from a negative value of I? at s = 0 to a positive value at s = 1 showing that there 
has been a net transfer of energy from the inner to the outer portion of the 
liquid. The differences between liquid and gas profiles having the same value of 
u result primarily from the transfer of energy from the outer to the inner portion 
of a gas by the work of compresaion, as discussed in connexion with figure 3. 
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(a) Liquid ( b )  Gas, y = 1.4 

FIGURE 4. Comparison of total energy I? z (E--ec) /$V2 distributions for 
a liquid and a gas a t  three values of the Prandtl number CT. 
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This compression effect is so strong for the gas that, a t  later times, the energy 
,@ decreases monotonically from s = 0 to s = 1, for all three Prandtl numbers.? 

For values of u > $ and u < +, the liquid energy-profiles have characteristics 
which are similar to those discussed above. However, as In-- 11 increases, the 
magnitudes of these energy-transfer effects increase as illustrated in figure 5 
where both the maximum and the minimum values of O(s, 7) which occur during 
the flow process a t  a particular u are plotted for values of u from 0.1 to 10. 

I I I I I 
- 1.0 - 0 5  0 05  1 .o 

log 0- 

FIGURE 5. Effect of Prandtl number cr on the extrema of the total energy 
2 F (E-ee,) /&V2 distributions for a liquid. 

For (T > 1, the maxima occur a t  s = 1.0 and the minima a t  s x 0.7; for u < 1, 
the maxima occur at  s x 0.8 and the minima at s M 0.55. Figure 5 shows that the 
maximum value of is a minimum for log u = 0, that is, the net energy transfer 
due to the opposing effects of viscosity and heat conduction is least for CT = 1.  
This result for unsteady, viscous, circular flow may be compared with the well- 
known result that, for steady, viscous, rectilinear flow (boundary-layer flow), 
the total enthalpy throughout the flow field is constant for u = 1. 

5.4. Xummary of results 

In  conclusion, it may be useful to review the results obtained for the energy- 
transfer processes in our problem. The assumed uniform initial total-energy 
distribution ( 2 0 b )  is changed by the action of viscosity both by the effect of 

t Another interesting example of the difference in energy profiles between liquid and 
low-speed gas flows having the same velocity field is given by Rott (1959). 
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viscous shear on the kinetic energy of a fluid element and the effect of viscous 
dissipation on its internal energy (24). For our circular-flow problem there is an 
additional indirect effect of viscosity for a gas. The change in the velocity 
distribution due to shear forces alters the radial pressure distribution which 
causes the gas elements to expand or contract with an accompanying change in 
internal energy due to the work of compression (23). For both liquids and gases, 
the non-uniform temperature distributions, resulting from the assumed initial 
condition and from viscous dissipation, induce a transfer of energy due to heat 
conduction which drives the temperature profile towards uniformity (23). 

The relative magnitudes of the viscous and heat-conduction effects depend 
upon the value of the Prandtl number, which strongly affects the spatial dis- 
tribution of energy during the early stages of the flow (figure 4). During thelater 
stages of the flow, however, the differences in energy distribution due to Prandtl 
number differences become less pronounced, and we find that there is a net 
outward flow of energy for the case of a liquid and a net inward flow for a gas. 
At the conclusion of the flow process the velocity approaches zero due to the 
action of viscosity, the temperature distribution approaches uniformity due to 
heat condition, and the energy returns to its uniform initial value as a con- 
sequence of conservation of energy. 

It is a pleasure to acknowledge the assistance of Mr N. Levine and Mr E. Camp- 
bell who programmed the numerical computations. 
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